Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 205.405
1.
Nat Commun ; 15(1): 2965, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580652

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.


Amacrine Cells , Retina , Mice , Animals , Amacrine Cells/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Synapses/metabolism , Microscopy, Electron , Dendrites/physiology
2.
Biochemistry (Mosc) ; 89(2): 257-268, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622094

This paper presents new structural data about mitochondria using correlative light and electron microscopy (CLEM) and cryo-electron tomography. These state-of-the-art structural biology methods allow studying biological objects at nanometer scales under natural conditions. Non-invasiveness of these methods makes them comparable to observing animals in their natural environment on a safari. The paper highlights two areas of research that can only be accomplished using these methods. The study visualized location of the Aß42 amyloid aggregates in relation to mitochondria to test a hypothesis of development of mitochondrial dysfunction in Alzheimer's disease. The results showed that the Aß42 aggregates do not interact with mitochondria, although some of them are closely located. Therefore, the study demonstrated that mitochondrial dysfunction is not directly associated with the effects of aggregates on mitochondrial structure. Other processes should be considered as sources of mitochondrial dysfunction. Second unique area presented in this work is high-resolution visualization of the mitochondrial membranes and proteins in them. Analysis of the cryo-ET data reveals toroidal holes in the lamellar structures of cardiac mitochondrial cristae, where ATP synthases are located. The study proposes a new mechanism for sorting and clustering protein complexes in the membrane based on topology. According to this suggestion, position of the OXPHOS system proteins in the membrane is determined by its curvature. High-resolution tomography expands and complements existing ideas about the structural and functional organization of mitochondria. This makes it possible to study the previously inaccessible structural interactions of proteins with each other and with membranes in vivo.


Electrons , Mitochondrial Diseases , Animals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Microscopy, Electron , Mitochondrial Diseases/metabolism
3.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654023

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Anti-Bacterial Agents , Cell Membrane , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Lipopolysaccharides/pharmacology , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/pharmacology , Microscopy, Electron , Gram-Negative Bacteria/drug effects , Escherichia coli/drug effects
4.
Sci Adv ; 10(16): eadk0217, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38630809

Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.


Electrons , Nanostructures , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Microscopy, Electron , Lipids/chemistry , Lipid Bilayers/chemistry , Nanostructures/chemistry
5.
Eur J Histochem ; 68(1)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38568205

The Feulgen reaction has been the first specific method for detecting DNA available at light microscopy since 1924. However, a similar specific method was proposed for electron microscopy only 50 years later. Here, we discuss the problems encountered in finding the electrondense reagent capable of taking advantage of the extremely high resolution offered by electron microscopy as well as some applications of the method.


Coloring Agents , Microscopy, Electron
6.
Viruses ; 16(3)2024 Feb 28.
Article En | MEDLINE | ID: mdl-38543740

The history of virology, which is marked by transformative breakthroughs, spans microbiology, biochemistry, genetics, and molecular biology. From the development of Jenner's smallpox vaccine in 1796 to 20th-century innovations such as ultrafiltration and electron microscopy, the field of virology has undergone significant development. In 1898, Beijerinck laid the conceptual foundation for virology, marking a pivotal moment in the evolution of the discipline. Advancements in influenza A virus research in 1933 by Richard Shope furthered our understanding of respiratory pathogens. Additionally, in 1935, Stanley's determination of viruses as solid particles provided substantial progress in the field of virology. Key milestones include elucidation of reverse transcriptase by Baltimore and Temin in 1970, late 20th-century revelations linking viruses and cancer, and the discovery of HIV by Sinoussi, Montagnier, and Gallo in 1983, which has since shaped AIDS research. In the 21st century, breakthroughs such as gene technology, mRNA vaccines, and phage display tools were achieved in virology, demonstrating its potential for integration with molecular biology. The achievements of COVID-19 vaccines highlight the adaptability of virology to global health.


Neoplasms , Viruses , Humans , COVID-19 Vaccines , Viruses/genetics , Molecular Biology , Microscopy, Electron , Virology/history
7.
Commun Biol ; 7(1): 377, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548849

Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by mitochondrial dynamics: the constant changes in mitochondria size, shape, and cristae morphology to secure cell homeostasis. Although changes in mitochondrial function are implicated in a wide range of diseases, our understanding is challenged by a lack of reliable ways to extract spatial features from the cristae, the detailed visualization of which requires electron microscopy (EM). Here, we present a semi-automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria, cristae, and intracristal spaces based on 2D EM images of the murine hippocampus. We show that our method provides a more accurate characterization of mitochondrial ultrastructure in 3D than common 2D approaches and propose an operational index of mitochondria's internal organization. With an improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in health and disease.


Mitochondrial Membranes , Volume Electron Microscopy , Mice , Animals , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Energy Metabolism , Microscopy, Electron
8.
Cell Rep Methods ; 4(3): 100720, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38452770

Serial sectioning electron microscopy (EM) of millimeter-scale three-dimensional (3D) anatomical volumes requires the collection of thousands of ultrathin sections. Here, we report a high-throughput automated approach, GAUSS-EM (guided accumulation of ultrathin serial sections-EM), utilizing a static magnetic field to collect and densely pack thousands of sections onto individual silicon wafers. The method is capable of sectioning hundreds of microns of tissue per day at section thicknesses down to 35 nm. Relative to other automated volume EM approaches, GAUSS-EM democratizes the ability to collect large 3D EM volumes because it is simple and inexpensive to implement. We present two exemplar EM volumes of a zebrafish eye and mouse olfactory bulb collected with the method.


Volume Electron Microscopy , Zebrafish , Animals , Mice , Microscopy, Electron , Silicon
9.
Methods Mol Biol ; 2754: 77-90, 2024.
Article En | MEDLINE | ID: mdl-38512661

The electron microscopy metainference integrative structural biology method enables the combination of cryo-electron microscopy electron density maps with molecular modeling techniques such as molecular dynamics to unveil the atomistic biomolecular structural ensemble and the error in the map data in an efficient manner. Here we illustrate the electron microscopy metainference protocol and analysis used to elucidate the atomistic structural ensemble of the microtubule-associated protein tau bound to microtubules by using state-of-the-art molecular mechanic force field and the electron density map.


Microtubules , Molecular Dynamics Simulation , Cryoelectron Microscopy/methods , Microscopy, Electron
10.
Methods Mol Biol ; 2754: 105-116, 2024.
Article En | MEDLINE | ID: mdl-38512663

Tau aggregates are considered a pathological hallmark of Alzheimer's disease. The screening of molecules against Tau aggregation is a novel strategy for Alzheimer's disease. The photo-excited molecules have proven to be effective as a therapeutic agent in several diseases. In recent studies, the photo-excited dyes showed an inhibitory effect on Alzheimer's disease-related Tau protein aggregation and toxicity. The present chapter deals with the effect of rose bengal on the aggregation of Tau. The in vitro studies carried out with the help of electron microscopy, ThS fluorescence, and circular dichroism suggested that RB attenuated the Tau aggregation under in vitro conditions, whereas PE-RB disaggregated the mature Tau fibrils. Photo-excited rose bengal and the classical rose bengal induced a low degree of toxicity in cells. Thus, for the treatment of Alzheimer's disease, the rose bengal could be considered a potential molecule.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Protein Aggregates , Rose Bengal/pharmacology , Rose Bengal/therapeutic use , Coloring Agents , tau Proteins/metabolism , Microscopy, Electron , Protein Aggregation, Pathological/metabolism
11.
Nature ; 628(8008): 630-638, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538795

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Homeostasis , Longevity , Lysosomes/metabolism , Lysosomes/ultrastructure , Amino Acid Motifs , Microscopy, Electron
12.
BMC Bioinformatics ; 25(1): 114, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491365

BACKGROUND: Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome's structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. RESULTS: Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine. CONCLUSIONS: NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org .


Connectome , Software , Animals , Neurons , Microscopy, Electron , Drosophila
13.
Nat Commun ; 15(1): 2445, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38503728

Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.


Arabidopsis , Single Molecule Imaging , Microscopy, Fluorescence/methods , Microscopy, Electron , Microscopy, Electron, Transmission , Single Molecule Imaging/methods , Electrons
14.
Methods Mol Biol ; 2793: 163-174, 2024.
Article En | MEDLINE | ID: mdl-38526730

Electron microscopy (EM) techniques play a vital role in virology research including phage discovery and their identification. The use of different staining protocols based on the concept of negative staining is one of the most important steps in the EM processing. This chapter will summarize the widely used EM protocols in phage research, their advantages, and limitations. Phage-based therapy, especially recently developed nanoparticle-phage conjugates, are expected to find clinical significance in the antimicrobial resistance (AMR) epidemic. EM techniques are important to characterize these conjugates and we will also discuss the methods here.


Bacteriophages , Epidemics , Microscopy, Electron , Negative Staining , Staining and Labeling
15.
eNeuro ; 11(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38514185

The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.


Electrons , Intralaminar Thalamic Nuclei , Neurons/physiology , Globus Pallidus , Microscopy, Electron
16.
Nature ; 627(8005): 898-904, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480887

A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures1. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight 'train track' assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to 'back of an envelope' architectural blueprints.


Nanostructures , Proteins , Crystallography, X-Ray , Nanostructures/chemistry , Proteins/chemistry , Proteins/metabolism , Microscopy, Electron , Reproducibility of Results
17.
J Nanobiotechnology ; 22(1): 106, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38468300

Understanding the intricate nanoscale architecture of neuronal myelin during central nervous system development is of utmost importance. However, current visualization methods heavily rely on electron microscopy or indirect fluorescent method, lacking direct and real-time imaging capabilities. Here, we introduce a breakthrough near-infrared emissive curcumin-BODIPY derivative (MyL-1) that enables direct visualization of myelin structure in brain tissues. The remarkable compatibility of MyL-1 with stimulated emission depletion nanoscopy allows for unprecedented super-resolution imaging of myelin ultrastructure. Through this innovative approach, we comprehensively characterize the nanoscale myelinogenesis in three dimensions over the course of brain development, spanning from infancy to adulthood in mouse models. Moreover, we investigate the correlation between myelin substances and Myelin Basic Protein (MBP), shedding light on the essential role of MBP in facilitating myelinogenesis during vertebral development. This novel material, MyL-1, opens up new avenues for studying and understanding the intricate process of myelinogenesis in a direct and non-invasive manner, paving the way for further advancements in the field of nanoscale neuroimaging.


Boron Compounds , Curcumin , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , Neurons , Microscopy, Electron
18.
Nature ; 627(8003): 367-373, 2024 Mar.
Article En | MEDLINE | ID: mdl-38383788

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Decision Making , Neural Pathways , Parietal Lobe , Synapses , Calcium/analysis , Calcium/metabolism , Decision Making/physiology , Interneurons/metabolism , Interneurons/ultrastructure , Learning/physiology , Microscopy, Electron , Neural Inhibition , Neural Pathways/physiology , Neural Pathways/ultrastructure , Parietal Lobe/cytology , Parietal Lobe/physiology , Parietal Lobe/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , Virtual Reality , Models, Neurological
19.
J Histochem Cytochem ; 72(3): 149-156, 2024 Mar.
Article En | MEDLINE | ID: mdl-38400717

Correlative microscopy is a sophisticated imaging technique that combines optical and electron microscopes, with the most common approach being the integration of light microscopy and electron microscopy, known as correlative light and electron microscopy (CLEM). While CLEM provides a comprehensive view of biological samples, it presents a significant challenge in sample preparation due to the distinct processes involved in each technique. Striking a balance between these methods is crucial. Despite numerous approaches, achieving seamless imaging with CLEM remains a complex task. Exosomes, nanovesicles ranging from 30 to 150 nm in size, are enclosed by a lipid bilayer and released by various cell types. Visualizing exosomes poses difficulties due to their small size and minimal electric charge. However, imaging exosomes at high resolution offers a direct method to understand their morphology and functions. In this study, we evaluated exosome imaging with CLEM using a combination of confocal, transmission electron microscope, and scanning electron microscope (SEM). In addition, we conducted a comparative analysis of these two techniques, evaluating their suitability and efficiency in imaging nanoscale structures. In this study, we found that confocal-SEM correlation is more applicable for imaging exosomes. Moreover, we observed that exosomes were found in clusters in confocal-SEM correlation.


Exosomes , Microscopy, Fluorescence/methods , Microscopy, Electron , Microscopy, Confocal , Microscopy, Electron, Scanning
20.
Curr Opin Struct Biol ; 85: 102788, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401399

Many protein and nucleoprotein complexes exist as helical polymers. As a result, much effort has been invested in developing methods for using electron microscopy to determine the structure of these assemblies. With the revolution in cryo-electron microscopy (cryo-EM), it has now become routine to reach a near-atomic level of resolution for these structures, and it is the exception when this is not possible. However, the greatest challenge is frequently determining the correct symmetry. This review focuses on why this can be so difficult and the current absence of a better approach than trial-and-error.


Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Microscopy, Electron
...